
Buffer Overflow
EXAMPLE CASE STUDY WALKTHROUGH

PADRAIGNIX – 12/09/2019



Agenda

 ELF file format layout

 Buffer Overflow theory

 Example code

 Initial Investigation / Assembly Registers 

 Tooling

 Fuzzing

 Shellcode / Payload / Exploit

 Exploitation

 Buffer Overflow Countermeasures

 Q&A



ELF (Executable and Linkable Format)

Each ELF file is made up of one ELF header, followed by file data. The 

data can include:
• Program header table
• Section header table
• Data referred to by entries in the program header table or section header table

When a program is run by the OS the executable will be held in memory 

in a very specific way.

On top of the data area, is the heap. This is a big area of memory where large 
objects are allocated (like images, files, etc.)

Below the kernel is the stack. This holds the local variables for each of the functions. 
When a new function is called, these are pushed on the end of the stack (see 
the stack abstract data type for more information on that).
Note that the heap grows up (from low to higher memory) and the stack grows 
downwards (from high to lower memory).

[1] https://en.wikipedia.org/wiki/Executable_and_Linkable_Format [2] https://www.coengoedegebure.com/buffer-overflow-attacks-explained/



Buffer Overflow Theory

Consider the case where a program calls a function, a piece of code that does 
something and returns where it was before. 

When the call is made, the parameters that are passed to the function, are pushed on 
top of the stack. With the parameters on the stack, the code of the function will then 
jump to somewhere else in memory and do something with these parameters.

https://www.coengoedegebure.com/buffer-overflow-attacks-explained/ goes into 
code theory quite well (won’t repeat everything here). 

Importantly, while the stack grows downward from high-memory to lower-memory 
addresses, the buffer itself is filled from lower- to higher memory addresses. This means 
that if we would pass a value that is bigger than the assigned buffer, it would start 
overwriting the base pointer that's lower in the stack (and higher up in the memory)

https://www.coengoedegebure.com/buffer-overflow-attacks-explained/


Buffer Overflow Example (Code)

Let’s test this out with a simple script – take an input and 

paste it out. Based on the previous slide, we know that 

the buffer size has 600 bytes of space reserved in the 

stack for buffer[]. 

Looks like our read line in the code will take up to 1000 

characters. What happens if we read over that buffer’s 

600 reserved size? 

Segfault

Let’s start poking around and see if we can leverage this 

to control the execution flow.



Initial Investigation

Before we start exploring too far think about what is happening in the code. Our main() 
function will have its own parameters and local variables inside a stack frame. When we 
reach the foo() function in the code, the execution will push return address and base address 
of the frame on to the stack then move to the execution code location of foo(). Once 
completed, the flow will pop off both of these and jump back to the previous execution 
location. 

If we are able to somehow overwrite this return address by overflowing data upwards, we 

can theoretically control the execution flow of the program.



Assembly Registers

Keeping things simple so it makes sense once we start looking at the tooling

 The ESP (Stack Pointer) register points to the current location within the stack segment.

 The EIP (Instruction Pointer) register always contains the address of the next instruction to be 
executed.

 The EBP register is the Base pointer to data in the data segment

If we are able to control EIP, we should be able to direct the execution flow to an address of 

our choosing.

[1] http://www.c-jump.com/CIS77/ASM/Instructions/index.html



Initial Look Under the Hood

Let’s rerun the script – this time attaching the execution flow to gdb
(specifically with the pwndbg extension) and see what we notice 
under the hood.

We manage to overflow quite a few registers, most importantly EIP. 
This explains why we segfault – when we overflow EIP and the 
execution flow returns to the point it references EIP it attempts to run 
code located at 0x41414141, which is currently invalid.

Excellent, if we can craft a proper payload we should be able to 

change 0x41414141 to a meaningful address (ideally, a chunk of code 
we control).

First thing’s first, let’s see if we can figure out the exact location where 
EIP is stored.



Fuzzing

 We can leverage a unique pattern to determine the 

exact location of EIP:

/usr/bin/msf-pattern_create -l 1000 > fuzz_rbp.in

 Now let’s rerun the program within gdb and check 

where EIP get’s overwritten:

/usr/bin/msf-pattern_offset -q 0x75413575

[*] Exact match at offset 616



Shellcode

 There is theoretical value in going through a C 
shellcode disassembly by hand – compiling your 
own C code, getting the machine code, then 
substituting the “bad character” executions 
manually. For the purposes of this example 
however, we will leverage msfvenom to create a 
payload for us. 

 The purpose of the shellcode will be to execute an 
‘echo “this is awesome”’. The options however are 
almost limitless.

 Notice the -b ‘\x00’. Since 0x00 is a null terminator 
we are telling msfvenom to avoid/substitute any 
commands that would have 0x00. More 
explanation into how this is done manually is 
covered in the shellcode chapter of Shellcoder’s
Handbook. 

[1] https://en.wikipedia.org/wiki/Null-terminated_string



Payload

 Let’s put this all together. Our plan is to put together a 616 byte payload that will control the execution 

flow into our custom shellcode. We know that EIP gets overwritten at 616, which means we can pack our 

shellcode in the buffer beforehand. We will leverage a technique called NOP Sledding and point EIP to 

an address within the NOP Sled region. Crudely drawn out it would look something like the following:

NOP Sled Shellcode Filler/Garbage

EIP address 
pointing to NOP 

Sled

616 Bytes



Payload – Part2

 A few clarifications from the payload in the previous slide:

 A NOP Sled is a series of 0x90 (NOP) where the program does not perform any commands other than 

move to the next code. If we put a series of these together, as long as we redirect the execution flow 

anywhere within the NOP chunk, we would “slide” to the end of NOPs where our next execution 

command (in our case, the shellcode) is located. 

 We locate the address within our NOP Sled (what we want to set EIP to) by investigating the stack 

within gdb and determining the address 0xffffd0a4 (you’ll notice something different in the next 

slide).



Exploit

 Let’s put it all together in a 

python script.

 The file format is little endian, 

so we need convert our EIP 

address appropriately.



Exploit – Part2

 Let run our python script and dump the payload into a text file.

 Then, let’s give it a test (notice the full execution paths). The environment within 
gdb/pwndbg does not necessarily match the system environment. Sometimes, 
an exploit will work within gdb/pwndbg yet not normally within the system.

 Excellent, we have successfully taken control of the execution flow!



Buffer Overflow Countermeasures

 There have been several countermeasures deployed to reduce the capability of executing 

the type of buffer overflow we covered in this presentation. Each of the first three below were 

explicitly turned off during code compilation / at the system level for educational purposes

 ASLR - Address space layout randomization

 Stack NX – Stack No-Execution

 Stack Canaries

 IDS NOP Sled detections

 Lastly, not all code is exploitable. Sometimes it just won’t work.



Q&A


